
Partial Derivatives

1 Limits

With single variable functions, we had a few methods of evaluating limits. For the limit to exist, we
required that:

lim
x→a+

f(x) = lim
x→a−

f(x) = L

With single variable functions, there are two directions to approach a limit. You can approach is from
the left and from the right. However, with multivariable functions, you can also approach it from the
vertical directions as well. With this in mind, we can create the de�nition for a limit of a multivariable
function:

lim
(x,y)→(a,b)

f(x, y) = f(a, b)

We simply require that the function is continuous at this point. The same things that created
discontinuity with single variable functions create discontinuity in multivariable functions: dividing by
zero, square roots of negatives, logarithms of numbers ≤ 0.

2 Partial Derivatives

To understand partial derivatives, we must �rst understand how derivatives actually work. If you take
a derivative of a function, say f(x), then you get the resulting change in the value of f(x) as x changes.
The idea with partial derivatives, is that we are isolating each variable such that only one of the variables
is changing while the other is constant. If you have more than one variable, and they are both changing
at the same time, there are technically an in�nite amount of ways that they could be changing.

Let's say that we have a multivariable function f(x, y). To �nd a partial derivative, we must hold
one of these variables constant. For instance, to �nd the partial derivative with respect to x, we must
hold y constant. We would write this fx(x, y). Using the same logic, if we want to �nd the partial
derivative with respect to y of f(x, y), we could write fy(x, y). Once you determine which variable you
are holding constant, you can then treat that variable like a constant and use the same rules we used for
single variable calculus. For example, if we have the function:

f(x, y) = 3x2y3

and we want to �nd fx(x, y) (the partial derivative of the function with respect to x), we could do:

fx(x, y) = 6xy3

If we wanted to �nd fy(x, y), we would have:

fy(x, y) = 9x2y2

These are very simple cases, of course, and are merely the �rst order partial derivatives. We can have
higher order partial derivatives in the same way that we can have higher order single variable derivatives.
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De�nition of a Partial Derivative If the concept of partial derivatives doesn't make sense yet, the
formal de�nition of a partial derivative may clarify any confusion:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h

The variable that we are partially di�erentiating with respect to is the variable that has the in�nitely
small change of h added to it.

Alternative Notation There are also alternative notations to partial derivatives, as seen below:

fx(x, y) = fx =
∂f

∂x
=

∂

∂x
(f(x, y))

fy(x, y) = fy =
∂f

∂y
=

∂

∂y
(f(x, y))

Traces A partial derivative is a slope of a trace. A trace is a two-dimensional part of a three-
dimensional graph when you hold one variable constant. For instance, if you are given a function,
f(x, y), and asked to �nd the slopes of the traces at point (x, y), you must use two separate partial
derivatives - one for each variable.

3 Higher Order Partial Derivatives

Like single variable functions, we can take the higher order partial derivatives of a multivariable function.
However, this time, we have more variables to choose from. If our �rst order partial derivative is one
variable, say x, then we take the derivative again but with respect to x or y. The same applies if our �rst
order partial derivative is with respect to y. This yields four possible second order partial derivatives,
represented by the notation below:

(fx)x = fxx =
∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2

(fx)y = fxy =
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y

(fy)x = fyx =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x

(fy)y = fyy =
∂

∂y

(
∂f

∂y

)
=

∂2f

∂y2

In the second and third example, we often call these mixed partial derivatives since we are taking
derivatives with respect to multiple variables. You must always di�erentiate with respect to the variables
left to right. The second example will sometimes give you a di�erent result than the third will despite
their similar notation.

Higher-Higher Order Partial Derivatives After taking the second order partial derivative, you
can continue doing this with respect to the same variables. It works the exact same way, but becomes
increasingly more tedious and complicated the higher you go.
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4 Chain Rule

The notation for chain rule with single variable functions is pretty standard, and generally not that
complicated:

(f(g(x)))′ = g′(x)f ′(g(x))

Despite the confusing notation, the chain rule with multivariable functions is, fundamentally, similar
to single variable functions. We will look at a few speci�c cases for the chain rule.

Case 1 In this case, we will have three functions: z = f(x, y), x = g(t), and y = h(t). In this case, the
chain rule is as follows:

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

Case 2 In this case, both x and y are multivariable functions as well: z = f(x, y), x = g(s, t),
y = h(s, t). The chain rule is as follows:

∂z

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s

∂z

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

General Rule for Chain Rule Suppose that z is a function of n variables x1, x2, ..., xn and that each
of these variables are functions of m variables t1, t2, ...tm. Then for any variable, ti, i = 1, 2, ...,m we
have the following:

∂z

∂ti
=

∂z

∂x1

∂x1

∂ti
+

∂z

∂x2

∂x2

∂ti
+ ...+

∂z

∂xn

∂xn

∂ti

Implicit Di�erentiation Let's start with a function in the form F (x, y) = 0. If a function isn't in
this form, we can get it there by moving everything to one side of the equals sign. In single variable
calculus, implicit di�erentiation could be tedious. Let's try to simplify it using partial derivatives. Let's
start by di�erentiation with respect to x:

Fx + Fy
dy

dx
= 0 =⇒ dy

dx
= −Fx

Fy

This makes implicit di�erentiation much easier in single variable calculus! We can do the same thing
with functions of three variables, F (x, y, z) = 0 and z = f(x, y). We will start by trying to �nd ∂z

∂x :

∂F

∂x

∂x

∂x
+

∂F

∂y

∂y

∂x
+

∂F

∂z

∂z

∂x
= 0

We will simplify this by treating y as constant ( dydx = 0) and simplifying fractions. Then, solving this
equation, we get:

∂z

∂x
= −Fx

Fz

You can do the same thing while treating x as a constant to get:

∂z

∂y
= −Fy

Fz
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5 Directional Derivatives

The discussion of directional derivatives allows us to �gure out what happens when you change both
x and y simultaneously. The main issue with this, however, is that x and y can be changing in more
than one way. They could be changing at di�erent rates and in di�erent directions as well. We can solve
this with the following de�nition.

Directional Derivative De�nition The rate of change of f(x, y) in the direction of the unit vector
u⃗ = ⟨a, b⟩ is called the directional derivative and is denoted by Duf(x, y). The formal de�nition is as
follows:

Du⃗f(x, y) = lim
h→0

f(x+ ah, y + bh)− f(x, y)

h

Derivation of a Simpler Formula While this is the formal de�nition, this is quite challenging to
work out in most cases. Let's derive a more e�cient formula. Let's start with a single variable function:

g(z) = f(x0 + az, y0 + bz)

where x0,y0,a, and b are some �xed numbers. With all of these variables �xed, the only variable that
is still changing is z. Therefore, by the single variable de�nition of a derivative, we have:

g′(z) = lim
h→0

g(z + h)− g(z)

h

g′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

f(x0 + ah, y0 + bh)− f(x0, y0)

h
= Du⃗f(x0, y0)

g′(0) = Du⃗f(x0, y0)

With this in the back of our minds, let's move onto another idea. With the chain rule, we have:

g′(z) =
dg

dz
=

∂f

∂x

dx

dz
+

∂f

∂y

dy

dz
= fx(x, y)a+ fy(x, y)b

g′(z) = fx(x, y)a+ fy(x, y)b

g′(0) = fx(x0, y0) + fy(x0, y0)b

Now, all we have to do is equate what we had before to this new expression:

g′(0) = Du⃗f(x0, y0) = fx(x0, y0)a+ fy(x0, y0)b

Du⃗f(x, y) = fx(x, y)a+ fy(x, y)b

Using a similar method, you can also derive a similar formula for vectors in R3:

Du⃗f(x, y, z) = fx(x, y, z)a+ fy(x, y, z)b+ fz(x, y, z)c
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6 Gradient

The gradient is a more simplistic looking version of the directional derivative. Using the previous
de�nition of the directional derivative, it should be clear that:

Du⃗f(x, y, z) = ⟨fx, fy, fz⟩ · ⟨a, b, c⟩

The second vector is the unit vector u⃗ that gives the direction of change. The �rst vector is called
the gradient. It is written:

∇f = ⟨fx, fy, fz⟩

With this new de�nition, we can rewrite the directional derivative:

Du⃗f = ∇f · u⃗

Maximum Rate of Change To get the maximum rate of change of a multivariable function, we can
use the gradient and directional derivative. The maximum rate of change of a function is given by:

∥∇f(x⃗)∥

and will occur in the direction given by ∇f(x⃗)

Quick Fact About Gradients The gradient vector ∇f(x0, y0) is orthogonal the the level curve
f(x, y) = k at (x0, y0). Similarly, the gradient vector ∇f(x0, y0, z0) is orthogonal to the leve surface
f(x, y, z) = k at the point (x0, y0, z0)
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